
CO
RR

EC
TE

D
PR

OO
F

Science of the Total Environment xxx (xxxx) 168342

Contents lists available at ScienceDirect

Science of the Total Environment
journal homepage: www.elsevier.com

Contrasting lake changes in Tibet revealed by recent multi-modal satellite
observations
Jiangjun Ran a, Lin Liu b, Guoqing Zhang c, C.K. Shum d, e, Jiahui Qiu a, Ruigang Hu a, Jianping Li f, g,
Junhuan Peng h, ⁎, Cheinway Hwang i, Yi Luan a, ⁎, Yue Sun f, g, Min Xu j, Dingmei Chen k, Jun Ding a,
Yulong Zhong l
a Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
b Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
c State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences,
Beijing, China
d Division of Geodetic Science, School of Earth Sciences, Ohio State University, Columbus, OH, USA
e State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan,
China
f Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Key Laboratory of Physical Oceanography, Academy of the Future Ocean, College of
Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China
g Laboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
h School of Land Science and Technology, China University of Geosciences, Beijing, China
i Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
j State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
k Shannan Meteorological Service of Tibet, Shannan, China
l School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan, China

A R T I C L E  I N F O

Editor: Ouyang Wei

Keywords:
Lake area
Summer expansion
Deep learning
Acceleration
Field campaign

A B S T R A C T

The limited anthropogenic activities on the Tibetan Plateau make this an ideal natural laboratory to elucidate
how climate change impacts lake changes. Previous studies have mainly focused on decadal lake changes, yet
their rapid evolutions at short temporal intervals and the associated atmospheric origins remain elusive. Here,
we produce a new lake area change dataset at monthly sampling over 2015–2020 from 16,801 satellite images.
Our estimates achieve an accuracy of <30 m, as evidenced by in-situ GPS field survey validations of representa-
tive lake shorelines. We found contrasting patterns in recent rapid area changes: deaccelerating in the north and
accelerating in the south. Such contrasting pattern was unprecedented in the last two decades and is likely
caused by recent precipitation anomalies, indicating that lakes in TP may experience a tipping point. Lakes are
found to store only a small portion (<5 %) of net precipitation in summer, increased to ~11 % for years with
heavy precipitation, which helps understand the water mass budget for lakes over there. Our study highlights the
importance of investigating short-term lake area changes as a climate proxy to study their rapid responses to in-
tra- and inter-annual climate variability.

1. Introduction

The Tibetan Plateau (TP) serves as an excellent natural laboratory
for investigating the response of lakes to the ongoing climate change, as
there is limited impact from anthropogenic activities due to sparse pop-
ulations. There are ~1400 lakes, each with an area >1 km2 the TP (Ma
et al., 2011; Zhang et al., 2019; Zhao et al., 2022). As a dynamic system,
lake area, level, and volume on the Tibetan Plateau quickly respond to

global and regional atmospheric circulations, and are therefore impor-
tant indicators of changes in temperature and precipitation (Chen et al.,
2022; Gronewold and Stow, 2014; Smith et al., 2005; Song et al., 2013;
Zhang, 2022; Zhang et al., 2017).

Even though global lakes show an overall decreasing trend in lake
area (Yao et al., 2023), the lake areas on the TP have predominantly ex-
perienced an obvious expansion over recent decades, observed by opti-
cal remote sensing data collected by Landsat series and Sentinel-2 satel-
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lite (Ma et al., 2011; Wan et al., 2014; Zhang, 2022; Zhang et al., 2017).
However, due to strong and frequent cloud contamination on optical
images, previous studies have usually used data collected over the less
cloudy winters, therefore limiting their investigations of lake area
changes at annual, multi-year, or longer intervals. Consequently, lake
area changes at shorter temporal intervals (e.g., sub-annual and
monthly), which are crucial, more sensitive, and previously much less
studied indicators of the lakes' response to natural climate variability,
remain poorly understood. A recent study by Zhang et al. (2020) made
an attempt to extract monthly changes in lake area (>50 km2, 165
lakes in total) using the support vector machine classification algo-
rithm, purely based on all-weather synthetic aperture radar (SAR) im-
ages from Sentinel-1 satellites. However, a close examination of the
SAR images shows that the lake shoreline delineation remains difficult
or impossible during winters, because of the indistinguishable similari-
ties between the frozen lake surfaces and the surrounding ice/snow-
covered land (see Fig. S1 for an example, where the lake shorelines can-
not be determined from January–April).

Combining the complementary advantages of the timing shift be-
tween poor quality winter SAR images and cloudy summer optical im-
ages, provides an opportunity to combine optical and SAR images to ex-
tract the changes in lake area at a higher temporal scale, i.e., monthly.
Unlike Zhang et al. (2020), we avoid using the problematic winter SAR
images by supplementing the observations with clear optical images
(Fig. S1). In this way, we study all lakes with an area of >30 km2 (total
of 204 lakes) at monthly intervals using deep learning. To validate our
lake shoreline estimates, we conducted a field campaign to collect
highly accurate shoreline positions with Global Positioning System
(GPS) for three typical lakes on the Tibetan Plateau (Fig. 1).

In this article, based on the high temporal (monthly) resolution of
lake area changes extracted from SAR and optical images, we are then
able to investigate: 1) how the lake area responds to climate changes at
the monthly scale, particularly for the heaviest rainfall events in
2016–2018 over the last two decades; 2) what is the possible link be-
tween the high temporal lake area changes and the recent rapid oscilla-
tions of atmospheric circulation; 3) what is the possible maximal capa-
bility of lakes to store the net summer precipitation. The results pre-
sented in this study provide, for the first time, a better understanding of
how Tibetan lakes respond to climate change at higher temporal scales.

2. Methods and data

2.1. Study area

The Tibetan Plateau (TP), known as the “Roof of the World”, has a
total lake area of ∼50,000 km2 (Zhang et al., 2019). Most of the lakes
concentrate in the endorheic basins (Fig. 1); thereby the analysis in this
study was mainly focused on the inner TP. In general, the lakes have
been experiencing area expansion since mid-1990s (Pekel et al., 2016;
Song et al., 2013; Wang et al., 2022; Yao et al., 2019; Zhang et al.,
2019; Zhang et al., 2020; Zhao et al., 2022).

For simplicity, three lakes on the TP are selected as examples to ana-
lyze the performance of lake shorelines extracted in this study against
the available in-situ data. For that purpose, we chose three accessible
and representative lakes, namely Selin Co (the largest lake in the inner
TP), Nam Co (the second-largest lake in the inner TP), and Yamzho
Yumco (the largest lake in the southeastern TP) for the validation.

2.2. Satellite images

Optical data from the Landsat-8 and Sentinel-2 satellite missions are
utilized in this study to extract the area changes for lakes whose areas
are >30 km2 (a total of 204 lakes). Landsat-8 is equipped with Opera-
tional Land Imager (OLI) and Thermal Infrared Sensor (TIRS). This
satellite is capable of mapping the TP with high temporal resolution

(16 days) and spatial resolution (~30 m). For this study, 6689 scenes of
OLI band-6 (short-wave infrared) images from the Landsat-8 Level 2
data were chosen to delineate the lake shorelines over 2015–2020, ex-
cept in the summer and early autumn months (i.e., June to October) be-
cause of frequent cloud cover. Sentinel-2 is equipped with Multi-
Spectral Instrument (MSI) sensors and has been monitoring the TP
every 10 days at a spatial resolution of 10 m since 2016. We selected
5910 scenes from MSI band-11 (also short-wave infrared) at the Level 2
processing to obtain the lake area changes over 2016–2020, except for
the summer months.

Level 1 Ground Range Detected (GRD) SAR images (4202 scenes)
from the Sentinel-1A/B satellites, collected in Interferometric Wide
(IW) swath mode during the summer months over 2015–2020, were
used to complement the optical images. The nominal spatial resolution
of the SAR images is 5 20 m. The temporal resolution of Sentinel-1 A/
B is 6 days.

2.3. CNN architectures to extract lake area changes

The artificial intelligence-based methods allow water bodies to be
identified from remote sensing images (Li et al., 2022; Li et al., 2019;
Weng et al., 2020; Yuan and Sarma, 2010; Zhang et al., 2020). When
processing the optical images, we used our in-house Convolutional
Neural Network (CNN) architecture LaeNet (Liu et al., 2020). For the
summer months of 2015–2020, this CNN algorithm is more difficult to
apply because of the strong speckle noise in the SAR images and the ab-
sence of clear optical images. Therefore, we used CloudNet (Zhang et
al., 2018) to process the SAR images obtained in the summer months
(Fig. S2).

In months for which optical images were not available, we utilized
SAR images instead. As the SAR images are typically noisy, the training
process for the CloudNet architecture (Fig. S2) involved the use of SAR
images along with some optical images collected during other months
(Chen, 2022). In order to reduce the noise in the SAR images, we fil-
tered the SAR images with the Refined Lee filter (Yommy et al., 2015).
Then, based on a 1:2 ratio of optical to SAR images, the resampled opti-
cal image and the filtered SAR image are merged into a new three-band
image. It is also worth mentioning that for complex lakeshores, we in-
troduced buffer zones around the shorelines to manually help with the
classification of water and non-water bodies (similar to Zhang et al.,
2020). Since the lake shorelines vary from year to year, but generally
the buffer zone of the next year is larger than the previous one, we man-
ually updated the buffer zone for each year. Note that the buffer zone
referred here is for each lake, and is quite different with the buffer zone
considered in the GRACE/GRACE-FO data processing, where it aims to
minimize the signal leakage.

It was found that our procedure (see Fig. S2) improved the perfor-
mance, even though the optical images were not collected in the same
month as the SAR images. The recall, accuracy, precision, and mIoU
(mean Intersection over Union) for CloudNet were 0.990, 0.983, 0.981,
and 0.938, respectively.

In short, we use deep learning (i.e., the CloudNet and LaeNet) to ex-
tract the water- and non-water bodies in the buffer zone from the SAR
and optical satellite images, and then take boundaries of water- and
non-water bodies as the lake shorelines. In this way, the lake area is the
summation of two parts: i.e., the constant part of area formed by the in-
ner boundary (see Area_inner in Fig. S3) and the time variable part of
area in the buffer zone (see Area_buffer in Fig. S3).

2.4. Satellite gravimetry products

The total terrestrial water storage (TWS) changes over 2015–2020
from satellite gravity missions, i.e., GRACE (the Gravity Recovery and
Climate Experiment, Tapley et al., 2019) and its successor GRACE Fol-
low-On (Landerer et al., 2020), are utilized in this study to investigate
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Fig. 1. A field campaign to collect in-situ lake shorelines. a) Distribution of lakes (>30 km2; total number: 204) investigated in this study. The three typical lakes,
i.e., Selin Co, Num Co, and Yamzho Yumco, which were selected to conduct the field campaign using GPS, are marked with black arrows. b) GPS base station (red
star) used as a high-precision reference when computing the coordinates of the lake shorelines using a GPS rover station. c) GPS rover station held by a moving sur-
veyor away from the water at distances of ~1 m. d) Field campaign for Selin Co on August 20, 2020. The GPS rover trajectory of Selin Co is shown as the yellow
line, whereas the GPS base station is indicated as a red star. e) GPS base and rover trajectory for Nam Co on August 2, 2020. f) GPS base and rover trajectory for
Yamzho Yumco on July 31, 2020. The Landsat 8 optical images, which are most closed to the field campaign time, are shown as the background in d)-f).

the net mass variations on the Tibetan Plateau. The State-of-The-Art
mascon products released by the National Aeronautics and Space Ad-
ministration, Jet Propulsion Laboratory (JPL RL06.1_v03) (Watkins et
al., 2015; Wiese et al., 2016) are considered here. The mascon products
are provided at monthly time interval and grided at 0.5-by-0.5° with
nominal spatial resolutions of 3-by-3°. In order to account for the signal
leakage caused by the coarse spatial resolution of GRACE/GRACE-FO
(Ran et al., 2021), a buffer zone with the width of 50 km is introduced,
when computing the total mass changes of inner Tibetan Plateau.

By subtracting the surface water storage, canopy water storage, soil
moisture storage, snow water equivalent, and glacier dynamics mod-
elled by the ensemble mean of three variants (i.e., Noah, CLM, and VIC)

of GLDAS hydrological models, from the total terrestrial water storage
from GRACE/GRACE-FO, it is possible to evaluate the modelled ground
water from hydrological models (e.g., PCR-GLOBAL, GLDAS) and the
derived value from this study.

2.5. Field campaign to collect in-situ lake shorelines by GPS

The lake shorelines delineated from the satellite optical and/or SAR
images may contain some misclassified water and non-water bodies
(Zhang et al., 2019). To understand the uncertainty level of the ex-
tracted lake shorelines, it is important to validate them against indepen-
dent data. We conducted a field campaign to map the lake shorelines

3
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with high accuracy (i.e., ~10 cm) using GPS. Three typical lakes (i.e.,
Selin Co, Nam Co, and Yamzho Yumco) are considered in this study. For
each lake, we selected one part of the shoreline with a length of ~5 km
and obtained its coordinates using GPS (Fig. 1). Because of the complex
topography of the TP, the shoreline geometries are quite diverse. There-
fore, to make our validation more reliable, we selected shoreline shapes
from three different lakes. For instance, the stretch of shoreline
recorded at Selin Co is the most complicated, with many sharp turns,
whereas that considered at Yamzho Yumco is relatively simple (Fig. 1),
with a mostly straight line.

The field campaign was carried out on three days in July and August
2020. For each lake, we first installed a static GPS base station equipped
with a Trimble Alloy receiver (Fig. 1). A moving GPS rover station
equipped with a SOUTH receiver was held by a surveyor who walked at
distances of ~1 m from the lake shoreline. In this way, we were able to
obtain coordinates of centimeter-level accuracies using differential
GPS.

In this study, the lake shoreline predicted by the deep learning
model from satellite images is compared with the in-situ GPS data, and
the root mean square error (RMSE) between them is calculated as fol-
lows:

(1)

where is the coordinate of a lake boundary pixel; ( )
indicates that the pixel is predicted by the deep learning, and
( indicates that the pixel is the measured GPS boundary data.

represents the distance between the predicted boundary point and
the measured boundary , and , ).

2.6. Lake level dataset

Lake levels can be monitored with satellite altimetry missions
(Arabsahebi et al., 2018; Huang et al., 2018; Xu et al., 2022; Zhang et
al., 2011). As the lake area and level typically exhibit a strong correla-
tion on the TP (Zhang et al., 2020), we treated the lake level as indepen-
dent data for comparing the extracted area changes and investigating
the response of lakes to atmospheric oscillations. The lake levels pro-
vided by Hydroweb (https://hydroweb.theia-land.fr/), the Global
Reservoirs and Lakes Monitor (G-REALM, https://ipad.fas.usda.gov/
cropexplorer/ global_reservoir/), and Xu et al. (2022) were used and
aggregated in this study. Note that due to limited spatial and temporal
resolutions of altimetry data, there are only 36 large lakes with monthly
lake level time series available.

2.7. Lake area data processing

After extracting the monthly lake area changes using deep learning,
we examined their performance in two independent ways. The first way
is to validate using in-situ lake shorelines of representative lakes. The
second way is that by following previous studies that inferred a strong
correlation between lake area and level, we thereby compared correla-
tion between the time series of extracted lake area and lake levels. Also,
in line with Song et al. (2013), we empirically reconstructed the lake
level data at the monthly scale for all lakes considered in this study;
then the lake area and level data were utilized to compute the lake wa-
ter mass changes over 2015–2020 and compared with independent
GRACE/GRACE-FO mascon product from NASA JPL. Note that the
months with missing lake area or level data were interpolated with the
regularized expectation–maximization method (Schneider, 2001).

Furthermore, the lake area trend and acceleration over 2015–2020
were calculated by fitting lake area change time series with bias, trend,
acceleration, annual, and semi-annual terms (see Eq. 2). We acknowl-

edge that the time span, i.e., 2015–2020, is short to obtain reliable ac-
celeration estimates. Therefore, the acceleration changes in lake area
here may likely refer to the transient variations.

(2)

where A to G are coefficients estimated by a least-square estimator.
is the reference time. , while T = 1 year.
In addition, we normalized the lake area time series over

2015–2020, and then grouped them into four categories based on the
contrasting pattern of the accelerations (τ) of lake area changes: 1) De-
celerating category with τ < −0.5 km2/yr2; 2) Transition category A
with −0.5 < τ < 0 km2/yr2; 3) Transition category B with
0 < τ < 0.5 km2/yr2; and 4) Accelerating category with
τ > 0.5 km2/yr2.

Finally, in order to examine the significant summer expansion of
lake area, we first estimated the summer area increase (ΔS) for a given
year as the difference in mean lake area between autumn and spring.
Then, we define the year as having a sharp summer increase if ΔS is at
least twice the mean ΔS over 2015–2020.

2.8. Climate data

Precipitation, temperature, and snow depth data for the TP were
collected from ERA 5 Land (ERA5L), which is the fifth generation of at-
mospheric reanalysis of the global climate by the European Centre for
Medium-range Weather Forecasts. ERA5L provides daily data gridded
at 0.1° × 0.1° (Muñoz-Sabater, 2019). We computed the net monthly
precipitation, temperature and snow for the inner TP, and interpolated
the monthly precipitation time series for each lake. We also considered
other precipitation products, e.g., China Gauge-Based Daily Precipita-
tion Analysis (CGDPA, 0.5° × 0.5°) from China Meteorological Admin-
istration (CMA), Global Precipitation Climatology Project (GPCP,
2.5° × 2.5°), and high-resolution precipitation dataset for the Third Po-
lar region (TPHiPr, 1/30° × 1/30°) (Shen and Xiong, 2016; Adler et al.,
2018; Jiang et al., 2023). Since our study aims to analyze the area
changes at a very high spatial scale, i.e., at the individual lake scale (>
30 km2), therefore we find the high spatial resolution precipitation
products from ERA5L (0.1° × 0.1°) or TPHiPr (1/30° × 1/30°) are
more suitable for analysis in this paper. In addition, to examine the
mass changes by snow, groundwater, soil moisture, and canopy water
are obtained by the ensemble mean of three land surface models:
NOAH, CLSM, and VIC, provided by of Global Land Data Assimilation
System (Rodell et al., 2004).

Furthermore, to understand the driving forcing from atmospheric
circulations for the observed lake area changes, we computed the sea-
sonal intensity of normalized surface wind field as Dynamic Normalized
Seasonality (DNS) index at 200 hPa (which corresponds to ~12,000 m)
within the domain (27° − 35°N, 70° − 95°E) (Li and Zeng, 2003). The
hourly wind field data grided at 0.25° × 0.25° were provided by the
ERA-5 (Hersbach et al., 2018). In line with the timing of precipitation
on the TP, we computed the DNS index by utilizing ERA5L surface wind
field output for months from April to September.

3. Results

3.1. Validation of delineated lake shorelines against in-situ GPS data

The lake shorelines were delineated as the boundary of the water
and land (see the shorelines of Selin Co, Nam Co, and Yamzho Yumco in
Fig. 2). The RMS of the differences between the lake shorelines ex-
tracted in this study and those obtained by the in-situ GPS campaign for
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Fig. 2. Deep-learning-based lake shorelines predictions. a) Predicted water and non-water areas for Selin Co determined by deep learning in this study are indicated
in blue and yellow, respectively. The in-situ GPS trajectory collected in this study is shown as the red curve. The RMS of the difference between the in-situ GPS trajec-
tory and the shoreline predicted in this study is 30.8 m. b) Similar to a), but for Num Co. c) Similar to a), but for Yamzho Yumco.

Table 1
Statistics of lake shoreline estimates. Field campaign to collect in-situ GPS
lake shoreline profiles at three typical lakes to validate the lake shorelines
predicted by deep learning in this study.

Selin Co Nam Co Yamzho Yumco

Length of the profile by GPS (km) 10.3 2.9 4.7
RMS of the differences (m) 30.8 20.1 23.7

Selin Co, Nam Co, and Yamzho Yumco are 30.8, 20.1, and 23.7 m, re-
spectively, corresponding to around 1 pixel for Landsat-8 images and
2–3 pixels for Sentinel-2 images (Table 1).

The correlation coefficient between lake area and level is close to 1,
with the R2 value around 0.9 for the three typical lakes considered
herein (Fig. 3). We examined the correlation between the monthly lake
area time-series from 2015 to 2017 reported by Zhang et al. (2020) and
the available monthly lake level time-series (for a total of 25 lakes). We
find that the mean correlation coefficient is ~0.36 for the lake area data
from Zhang et al. (2020), whereas the mean correlation coefficient is
~0.95 for the lake area data extracted in this study (Fig. S4).

Fig. 3. Extracted lake areas and shorelines in this study. a) Monthly lake area time series for Selin Co over 2015–2020 contributed by this study is shown as the blue
line. For comparison, the annual lake area changes over 2003–2014 provided by previous studies are also included. The available water level data are shown as the
gray line. b) Similar to a), but for Num Co. c) Similar to a), but for Yamzho Yumco.
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The monthly lake area data for Selin Co, Nam Co, and Yamzho
Yumco are shown in Fig. 3 as examples. The lake area data over
2003–2014 contributed by previous studies (Zhang et al., 2019; Zhao et
al., 2022) are also shown. From the rate in lake area data over
2015–2020 (Fig. S5), almost all the lakes (194 out of 204) expanded
during this period, with only a few lakes concentrated in the southeast-
ern inner TP decreasing in area. In addition, from Fig. 3a–c, one can
also observe obvious sub-annual variations that had not been identified
in previous studies.

3.2. Contrasting regional patterns in accelerated lake area changes

The newly-discovered accelerations of lake area changes over
2015–2020 reveal obvious contrasting regional patterns (at the 95 %
confidence level) for the lakes in the inner TP (Fig. 4). The largest in-
creasing acceleration of lake area changes was 5.6 0.8 km2/yr2 for
Selin Co in the southern inner plateau, whereas the largest decreasing
one was −6.0 0.7 km2/yr2 for Maergai Chaka in the northern inner
plateau. Even though almost all the lakes were expanding during this
time period (Fig. S5), those in the northern inner plateau clearly exhib-
ited deceleration, whereas those located in the southern inner plateau
exhibited significant acceleration (Fig. 4). The central inner plateau is a
gradual transition zone. As shown in Fig. 4, similar contrasting regional
patterns are also evident in lake level changes.

To investigate whether such contrasting patterns occurred in previ-
ous years, we examined the accelerations of lake area changes over the
last two previous six-year periods, i.e., 2003–2008 and 2009–2014. For
2003–2008, the lakes in the central inner plateau accelerated in area,
whereas those in the northern and southern parts were decelerating
(Fig. S6). During 2009–2014, most lakes showed decelerating in lake

area changes (Fig. S6), except for a slight accelerating in the southwest-
ern inner plateau. Note that the confidence level of 95 % applies to far
fewer lakes (<23) in the periods 2003–2008 and 2009–2014 than for
2015–2020. This is because the temporal samplings for lake area
changes in the two earlier six-year periods were limited to one measure-
ment per year (Zhao et al., 2022) or less (Zhang et al., 2017). The analy-
sis above suggests that the past three six-year periods covering
2003–2020 (roughly two decades) did not exhibit the same pattern in
the observed accelerations of the lake area changes in this study.

By examining the acceleration of precipitation products from ER-
A5L, we infer that the contrasting patterns observed in the lake area
data for each period were related to oscillations in local precipitation
(Fig. S7). The correlation between lake area and precipitation changes
over 2015–2020 is very close to 1 for most lakes. Note that we also ex-
amined other possible contributors, e.g., snow, glacier, and tempera-
ture. However, we find no clear linkage between them and the lake area
acceleration change patterns.

3.3. Significant summer expansion of lake area

Based on the ERA5L precipitation product, there are significant in-
ter- and intra-annual variations. In particular, the summers of 2016,
2017, and 2018 had the heaviest precipitation over the previous
~20 years (Figs. S8 and S9). As shown in Fig. 5, we infer that the decel-
erating category (Fig. 5a) is caused by the sharp summer increases in
lake area in 2016 and 2017, whereas negligible or no increases oc-
curred in the other years. For transition category A, the summer expan-
sion also occurred in 2016 and 2017, but these played a relatively
smaller role than in the decelerating category. There was an obvious
summer expansion in 2018 as well, but weaker than in 2016 and 2017.

Fig. 4. Contrasting regional patterns of lake area and level acceleration changes. (a) The estimated lake area accelerations and aggregated lake level changes (at the
95 % confidence level) over 2015–2020. Note that the acceleration of lake area and level are indicated with red/blue and light red/blue bars, respectively. Trend
over 2015–2020 of annual changes in water level using aggregated data from Hydroweb, G-REALM, and Xu et al. (2022). (b) The net water mass change time-series
in lakes on the inner Tibetan Plateau over 2015–2020 is shown in green, whereas the total terrestrial water storage (TWS) of the same area observed by GRACE/
GRACE-FO is in black. (c) The summer lake water expansion in mass (Gt) at the yearly interval over 2015–2020 is delineated with the green curve; similarly, the
summer net terrestrial water storage and precipitation anomalies are in black and red, respectively.
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Fig. 5. Normalized lake area time series for different categories. a) Decelerating category with acceleration τ < −0.5 km2/yr2. b) Transition category A with
−0.5 < τ < 0 km2/yr2. c) Transition category B with 0 < τ < 0.5 km2/yr2. d) Accelerating category with τ > 0.5 km2/yr2. Each thin gray line denotes a lake. The
thick black line shows the mean of all lakes of each category. e) Combined patterns averaged from each category. Note that we have combined transition categories A
and B into a single transition category.

It is worth noting that the strong seasonality of lake area changes in the
decelerating category was only presented 8than in 2016 and 2017. It
negligible for the remaining years. For the two transition categories and
the accelerating category, however, the seasonality was prominent in
all years. In transition category B and the accelerating category, the
summer expansion in 2018 was larger than that of the other years. Fur-
thermore, there was a continuous increase in lake area from 2018 to
2020 in transition category B and the accelerating category, whereas
the lake area remained relatively stable from 2018 to 2020 in the decel-
erating category and transition category A. In the accelerating category,
the lake area in 2015 was slightly larger than in 2016, whereas no such
decrease occurred in transition category B.

To better understand the temporal causes for the contrasting accel-
eration pattern, we examine the geographically averaged normalized
lake area change time-series for each category and present them to-
gether in Fig. 5e. Note that for simplicity, we have combined transition
categories A and B as a single transition category. Corresponding to the
three averaged patterns, we chose a representative lake for each pattern
to examine the lake shoreline responses from 2015 to 2020. For the ac-

celerating category, it is found that the shoreline of Selin Co retreated
slightly in 2016 compared with 2015, followed by a continuous ad-
vance from 2017 (Figs. S10–11). For the transition category, a part of
the shoreline of Tso Meima (τ = 0.1 km2/yr2) indicated a continuous
advance from 2015 to 2020 (Figs. S10–11). For the decelerating cate-
gory, we chose a part of the shoreline of Maergai Chaka. The lake shore-
line exhibited a sharp advance in 2016 and 2017, whereas it remained
unchanged in the subsequent years (Figs. S10–11). These changes in
lake shorelines were consistent with the patterns extracted from the
time series of lake area changes (Fig. 5).

We also observed sharp summer expansions in 2016 and 2017 (Fig.
5a-b), with a relatively smaller but still obvious summer expansion in
2018 (Fig. 5c-d), in all four categories. As shown in Fig. 6a-f, from 2015
to 2020, the number of lakes in which a sharp summer expansion oc-
curred quickly increased from 2015 to 2016, then reached the maxi-
mum in 2016–2018, and finally vanished from 2019 to 2020. Interest-
ingly, it is found that the summer expansion spatially started in the
northern inner plateau, and gradually shifted to the southern inner
plateau (Fig. 6a-f).
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Fig. 6. The Summer expansion for different key climatic factors. Summer expansion in lake areas (a-f), net precipitation anomalies (g-l), total GRACE/FO-based
TWS (m-r), and the Dynamic Normalized Seasonality (DNS) and wind (vector, m/s) at 200 hPa (s-x) at annual intervals over 2015–2020. Note that there is no data
for TWS in 2017 because of the gap between GRACE and GRACE-FO missions.

3.4. Atmospheric forcing of summer expansion associated with heavy
precipitation events

To explore the underlying reasons for this spatiotemporal evolution
of lake area changes, we examined the annual net precipitation anom-
alies for the inner TP. As shown in Fig. 6g-l, the large precipitation
anomalies well correspond to the significant summer expansion in lake
areas both spatially and temporally. According to the ERA5L precipita-
tion product, the largest net precipitation events over the past 20 years
occurred in 2016, 2017, and 2018 (Fig. S8). Furthermore, we examined
the responsible driving force of variations in atmospheric circulations
over 2015–2020 at a large spatial scale. It is found that in general, the
positive DNS index in 2016 (entire inner TP), 2017 (southwestern inner
TP) and 2018 (southeastern inner TP) show a good consistency with
heavy precipitation occurred in 2016–2018 at the regional spatial scale
(Fig. 6s-x). In particular, the “L”-shape precipitation pattern in 2018
(Fig. 6j) was likely associated with wind direction changes from the

southeastern inner TP (see the northward and southward wind vector
changes in Fig. 6v). Such recent precipitation anomalies in 2016, 2017,
and 2018 were likely caused by the weakened westerlies and strength-
ened south Asian summer monsoon. However, further studies are
needed to understand the atmospheric origin.

Furthermore, we also considered how other possible climatic factors
contributed to the summer expansion in lake area. As shown in Fig. S12,
even though some patterns were observed in the summer anomalies of
snow, groundwater, soil moisture, canopy water, and temperature,
their patterns showed almost no clear linkage to that of lake area sum-
mer expansion. As for the summer glacier changes in the inner Tibetan
Plateau, we do not show them here because of their negligible ampli-
tude (Zhang et al., 2020).
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3.5. Linkage of lake area summer expansion to TWS anomaly

Interestingly, we examined the summer TWS anomalies from
GRACE/GRACE-FO and found that the lake water mass change time se-
ries over 2015–2020 was consistent with that of TWS. As shown in Fig.
4b, the long-term trends over 2015–2020 for lake mass and TWS trend
were 15 Gt/yr and 17 Gt/yr, indicating ~2 times lake mass gain than
the trend (e.g., ~8 Gt/yr) of previous periods (Wang et al., 2016). Fur-
thermore, the summer mass increases in TWS observed by GRACE/
GRACE-FO were believed to be caused by the lake water accumulation
in summer (Figs. 4c and 6). It is also worth to mentioning that 1) for the
heavy precipitation years (i.e., 2016–2018), only ~11 % of the net
summer precipitation is stored by the lakes; 2) for the other years, even
less (<5 %) water is buffered (see Fig. 4c).

4. Discussion and conclusions

In this study, we have combined optical and SAR images to extract
the monthly lake area changes 2015–2020 for lakes with each area >
30 km2 using deep learning. This significantly improves the temporal
resolution of lake area changes compared to previous studies (Ma et al.,
2011; Wan et al., 2014; Zhang, 2022; Zhang et al., 2017). By validating
the satellite data against in-situ GPS data, we found that the accuracy of
the lake shorelines obtained in this study was within 1–2 pixels
(<30 m).

By investigating the acceleration of lake area changes over
2015–2020, we identified a statistically significant contrasting regional
pattern in the inner TP. This indicates that, although most lakes are ex-
panding, those in the northern inner TP were experiencing a significant
deacceleration of lake area changes, whereas an accelerating pattern
can be observed for lakes in the southern inner TP, likely caused by re-
cent rapid precipitation anomalies. Other climatic factors such as snow
and temperature contributed negligibly to such pattern changes. This
contrasting pattern was not presented in the previous ~20 years, which
may indicate the lakes experienced a tipping point.

The investigation on mass budget in TP is quite challenging, mainly
because of sparse reliable observations over there. This largely limits
our understanding of its response to climate changes. However, the in-
ner TP is an excellent natural laboratory because it is an endorheic
basin with negligible human impacts, and thereby with a much simpler
mass balance condition. By far, several mass balance components for in-
ner TP are still quite uncertain, i.e., surface water storage, groundwater
water storage, etc. Here, in this study, using an accurate estimate of the
surface water storage, i.e., mainly referring to the lake mass changes ex-
tracted in this study, we suggest that ground water storage modelled by
the state-of-the-art hydrological models (e.g., PCR-GLOBAL, GLDAS)
roughly overestimates the trend and seasonal amplitude by >2 times
than that by this study (Fig. S13). This indicates extensive studies are
still needed to explore the ground water storage over there.

Furthermore, Lakes are found to store only a small portion (<5 %)
of net precipitation in summer, increased to ~11 % for years with
heavy precipitation. This indicates a bench mark for water mass budget
for inner TP. Our study provides a novel opportunity to investigate the
response of lake areas to natural climate variability at intra-annual
scales.

Data availability

The monthly Tibetan lake area time series over 2015–2020 can be
found at https://zenodo.org/record/8424857. The Sentinel-1 and Sen-
tinel-2 data are downloaded from the European Space Agency. The
satellite images of Landsat-8 are downloaded from the U.S. Geological
Survey (USGS). The lake area between 2003 and 2014 are available at
https://zenodo.org/record/7009755. The lake level data from altime-
try are available at https://zenodo.org/record/

5732806#.YpcXEajP25c, the Hydroweb (http://hydroweb.theia-
land.fr), the Global Reservoir and Lake Monitor database (G-REALM;
https://ipad.fas.usda.gov/cropexplorer/global_reservoir) and the Na-
tional Tibetan Plateau Data Center (http://data.tpdc.ac.cn/). Jet
Propulsion Laboratory (JPL) at the National Aeronautics and Space Ad-
ministration (http://grace.jpl.nasa.gov) is acknowledged for mascon
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